地源熱泵
地源熱泵市場前景
文章來源:地大熱能 發(fā)布作者: 發(fā)表時(shí)間:2021-10-28 14:03:23瀏覽次數(shù):1974
地源熱泵空調(diào)夏天利用低溫井水制取7℃冷凍水制冷,冬天利用溫暖井水制取45-50℃熱水供暖,是冷暖一步到位的高檔中央空調(diào)。地面以上工程造價(jià)與其他中央空調(diào)基本一樣,只是多了地下工程造價(jià),但可節(jié)省冷卻塔和鍋爐房投資總體造價(jià)并沒增加。夏季制冷可比一般空調(diào)節(jié)省50%電能,冬季供暖比用燃煤鍋爐節(jié)省40%費(fèi)用,性價(jià)比很高。
國家提倡建設(shè)節(jié)約型社會(huì),國家強(qiáng)制建筑節(jié)能,不節(jié)能的房子不讓開工,不節(jié)能的房子不許銷售,房產(chǎn)開發(fā)推廣地源熱泵空調(diào)勢(shì)在必行。美國總統(tǒng)布什在自己的農(nóng)莊帶頭安裝地源熱泵,英國王宮帶頭安裝地源熱泵,我國也在要求政府大樓帶頭安裝地源熱泵,全民推廣使用地源熱泵的高潮正在到來。
《地源熱泵系統(tǒng)工程技術(shù)規(guī)范》(GB 50366-2005)解析。
實(shí)施可持續(xù)發(fā)展能源戰(zhàn)略已成為新時(shí)期我國能源發(fā)展的基本方針,可再生能源在建筑中的應(yīng)用是建筑節(jié)能工作的重要組成部分。2006年1月1日《可再生能源法》正式實(shí)施,地源熱泵系統(tǒng)作為可再生能源應(yīng)用的主要途徑之一,同時(shí)也是最利于與太陽能供熱系筒充相結(jié)合的系統(tǒng)形式,近年來在國內(nèi)得到了日益廣泛的應(yīng)用。地源熱泵系統(tǒng)利用淺層地?zé)崮苜Y源進(jìn)行供熱與空調(diào),具有良好的節(jié)能與環(huán)境效益,但由于缺乏相應(yīng)規(guī)范的約束,地源熱泵系統(tǒng)的推廣呈現(xiàn)出很大盲目性, 許多項(xiàng)目在沒有對(duì)當(dāng)?shù)?a href="http://www.ysjjz.com/t/資源.html" >資源狀況進(jìn)行充分評(píng)估的條件下就匆匆上馬,造成了地源熱泵系統(tǒng)工作不正常。為規(guī)范地源熱泵系統(tǒng)的設(shè)計(jì)、施工及驗(yàn)收,確保地源熱泵系統(tǒng)安全可靠的運(yùn)行,更好地發(fā)揮其節(jié)能效益,由中國建筑科學(xué)研究院主編,會(huì)同13個(gè)單位共同編制了《地源熱泵系統(tǒng)工程技術(shù)規(guī)范》(以下簡稱《規(guī)范》)。
該規(guī)范現(xiàn)已頒布,并于2006年1月1日起實(shí)施。
由于地源熱泵系統(tǒng)的特殊性,其設(shè)計(jì)方法是其關(guān)鍵與難點(diǎn),也是業(yè)內(nèi)人士普遍關(guān)注的問題,同時(shí)也是國外熱點(diǎn)課題,在新頒布的規(guī)范》中首次對(duì)其設(shè)計(jì)方法提出了具體要求。
(一)《規(guī)范》的適用范圍及地源熱泵系統(tǒng)的定義。
1.《規(guī)范》的適用范圍。
《規(guī)范》適用于以巖土體、地下水、地表水為低溫熱源,以水或添加防凍劑的水溶液為傳熱介質(zhì),采用蒸汽壓縮熱泵技術(shù)進(jìn)行供熱、空調(diào)或加熱生活熱水的系統(tǒng)工程的設(shè)計(jì)、施工及驗(yàn)收。它包括以下兩方面的含義:
(1)“以水或添加防凍劑的水溶液為傳熱介質(zhì)”,意指不適用于直接膨脹熱泵系統(tǒng),即直接將蒸發(fā)器或冷凝器埋人地下的一種熱泵系統(tǒng)。該系統(tǒng)目前在北美地區(qū)別墅或小型商F掃建筑中應(yīng)用,它的優(yōu)點(diǎn)是成孔直徑小、效率高、也可避免使用防凍劑。但制冷劑泄漏危險(xiǎn)f生較大,僅適于小規(guī)模應(yīng)用。
(2)“采用蒸氣壓縮熱泵技術(shù)進(jìn)行…”,意指不包括吸收式熱泵。
2.地源熱泵系統(tǒng)的定義。
地源熱泵系統(tǒng)根據(jù)地?zé)崮?/a>交換系統(tǒng)形式的不同,分為地埋管地源熱泵系統(tǒng)(簡稱地坶管。系統(tǒng))、地下水地源熱泵系統(tǒng)(簡稱地下水系統(tǒng))和地表水地源熱泵系統(tǒng)(簡稱地表水系統(tǒng))。其中地埋管地源熱泵系統(tǒng)也稱地耦合系統(tǒng)( closed - loopground - coupledheatpump。ystem)或土壤源地源熱泵系統(tǒng),考慮實(shí)際應(yīng)用中人們的稱呼習(xí)慣,同時(shí)便于理解,《規(guī)范》
定義為地埋管地源熱泵系統(tǒng)。地表水系統(tǒng)中的地表水是一個(gè)廣義的概念,包括河流、湖泊、海水、中水或達(dá)到國家排放標(biāo)準(zhǔn)的污水、廢水等。只要是以巖土體、地下水或地表水為氐溫熱源,由水源熱泵機(jī)組、地?zé)崮?/a>交換系統(tǒng)、建筑物內(nèi)系統(tǒng)組成的供熱空調(diào)系統(tǒng),統(tǒng)稱為也源熱泵系統(tǒng)。
(二)地源熱泵系統(tǒng)的設(shè)計(jì)特點(diǎn)。
1.地源熱泵系統(tǒng)受低位熱源條件的制約。
對(duì)地埋管系統(tǒng),除了要有足夠的埋管區(qū)域還要有比較適合的巖土體特性。堅(jiān)硬的巖土體將增加施工難度及初投資,而松軟巖土黼9地質(zhì)變形對(duì)地埋管換熱器也會(huì)產(chǎn)生不利影響。為此,工程勘察完成后,應(yīng)對(duì)地埋管換熱系統(tǒng)實(shí)施的可行性及經(jīng)濟(jì)性進(jìn)行評(píng)估。
對(duì)地下水系統(tǒng),首先要有持續(xù)水源的保證,同時(shí)還要具備可靠的回灌能力。《規(guī)范》中強(qiáng)制規(guī)定“地下水換熱系統(tǒng)應(yīng)根據(jù)水文地質(zhì)勘察資料進(jìn)行設(shè)計(jì),并必須采取可靠回灌措施,確保置換冷量或熱量后的地下水全部回灌到同一含水層,不得對(duì)地下水資源造成浪費(fèi)及污染。系統(tǒng)投入運(yùn)行后,應(yīng)對(duì)抽水量、回灌量及其水質(zhì)進(jìn)行監(jiān)測”。
對(duì)地表水系統(tǒng),設(shè)計(jì)前應(yīng)對(duì)地表水系統(tǒng)運(yùn)行對(duì)水環(huán)境的影響進(jìn)行評(píng)估。地表水換熱系統(tǒng)設(shè)計(jì)方案應(yīng)根據(jù)水面用途,地表水深度、面積、水質(zhì)、水位、水溫情況綜合確定。
2.地源熱泵系統(tǒng)受低位熱源的影響很大。
低位熱源的不定因素非常多,不同的地區(qū)、不同的氣象條件,甚至同一地區(qū)不同區(qū)域,低位熱源也會(huì)有很大差異,這些因素都會(huì)對(duì)地源熱泵系統(tǒng)設(shè)計(jì)帶來影響。如地埋管系統(tǒng),巖土體熱物性對(duì)地埋管換熱器的換熱效果有很大影響,單位管長換熱能力差別可達(dá)3倍或更多。
3.設(shè)計(jì)相對(duì)復(fù)雜。
低位熱源換熱系統(tǒng)是地源熱泵系統(tǒng)特有的內(nèi)容,也是地源熱泵系統(tǒng)設(shè)計(jì)的關(guān)鍵和難點(diǎn)。地下?lián)Q熱過程是一個(gè)復(fù)雜的非穩(wěn)態(tài)過程,影響因素眾多,計(jì)算過程復(fù)雜,通常需要借助專用軟件才能實(shí)現(xiàn)。
地源熱泵系統(tǒng)設(shè)計(jì)應(yīng)考慮低位熱源長期運(yùn)行的穩(wěn)定性。方案設(shè)計(jì)時(shí)應(yīng)對(duì)若干年后巖土體的溫度變化,地下水水量、溫度的變化,地表水體溫度的變化進(jìn)行預(yù)測,根據(jù)預(yù)測結(jié)果確定應(yīng)采用的系統(tǒng)方案。
地源熱泵系統(tǒng)與常規(guī)系統(tǒng)相比,增加了低位熱源換熱部分的投資,且投資比例較高,為了提高地源熱泵系統(tǒng)的綜合效益,或由于受客觀條件限制,低位熱源不能滿足供熱或供冷要求時(shí),通常采用混合式地源熱泵系統(tǒng),即采用輔助冷熱源與地源熱泵系統(tǒng)相結(jié)合的方式。確定輔助冷熱源的過程,也就是方案優(yōu)化的過程,無形中提高了方案設(shè)計(jì)的難度。
(三)地源熱泵系統(tǒng)設(shè)計(jì)要點(diǎn)。
1.地埋管系統(tǒng)。
由于地埋管系統(tǒng)通過埋管換熱方式將淺層地?zé)崮苜Y源加以利用,避免了對(duì)地下水資源的依賴,近年來得到了越來越廣泛的應(yīng)用。但地埋管系統(tǒng)的設(shè)計(jì)方法一直沒有明確規(guī)定,通常設(shè)計(jì)院將地埋管換熱設(shè)計(jì)交給專業(yè)工程公司完成。除少數(shù)有一定技術(shù)實(shí)力的公司引進(jìn)了國外軟件,可作一些分析外,通常專業(yè)公司只是根據(jù)設(shè)計(jì)負(fù)荷,按經(jīng)驗(yàn)估算確定埋管數(shù)量及埋深,對(duì)動(dòng)態(tài)負(fù)荷的影響缺乏分析,對(duì)長期運(yùn)行效果沒有預(yù)測,造成地埋管區(qū)域巖土體溫度持續(xù)升高或降低,從而影響地埋管換熱器的換熱性能,降低地埋管換熱系統(tǒng)的運(yùn)行效率。
因此,保證地埋管系統(tǒng)長期穩(wěn)定運(yùn)行是地埋管換熱系統(tǒng)設(shè)計(jì)的首要問題,在保證需求的條件下,地埋管換熱系統(tǒng)設(shè)計(jì)應(yīng)盡呵能降低初投資及運(yùn)行費(fèi)用。
1)負(fù)荷計(jì)算。
地埋管系統(tǒng)是否能夠可靠運(yùn)行取決于埋管區(qū)域巖土體溫度是否能長期穩(wěn)定。
以一棟總建筑面積為2 100矗的小型辦公建筑為例,選取4個(gè)具有代表性的地區(qū):
北京、上海、沈陽和齊齊哈爾,利用TRNSYS模擬地源熱泵系統(tǒng)連續(xù)運(yùn)行5年后。
由于吸、釋熱量不平衡造成巖土體溫度的持續(xù)升贏或降低,導(dǎo)致進(jìn)入水源熱泵機(jī)組的傳熱介質(zhì)溫度變化很大,該溫度的提高或降低,都會(huì)帶來瘩源熱泵機(jī)組性能系數(shù)的降低,不僅影響地源熱泵系統(tǒng)的供冷供熱效果-,也降低了地源熱泵系統(tǒng)的整體節(jié)能性。為此《規(guī)范》明確規(guī)定,“地埋管換熱系統(tǒng)設(shè)計(jì)應(yīng)進(jìn)行全年動(dòng)態(tài)負(fù)荷計(jì)算,最小計(jì)2周期宜為1年。計(jì)算周期內(nèi),地源熱泵系統(tǒng)總釋熱量宜與其總吸熱量相平衡”。
2)地埋管換熱器設(shè)計(jì)。
地埋管換熱器設(shè)計(jì)是地埋管系統(tǒng)設(shè)計(jì)特有的內(nèi)容和核心。由于地埋管換熱器換熱效果不僅受巖土體導(dǎo)熱性能及地下水流動(dòng)情況等地質(zhì)條件的影響,同時(shí)建筑物全年動(dòng)態(tài)負(fù)荷、巖土體溫度的變化、地埋管管材、地埋管形式及傳熱介質(zhì)特性等因素都會(huì)影響地埋管換熱器的換熱效果。
地埋管換熱器有兩種主要形式,即豎直地埋管換熱器(以下簡稱豎直埋管)和水平地埋管換熱器(以下簡稱水平埋管)。由于水平埋管占地面積較大,目前應(yīng)用以豎直埋管居多。
3)巖土體熱物性的確定。
巖土體熱物性的確定是豎直埋管設(shè)計(jì)的關(guān)鍵。《規(guī)范》中規(guī)定“地埋管換熱器設(shè)計(jì)計(jì)算宜根據(jù)現(xiàn)場實(shí)測巖土體及回填料熱物性參數(shù)進(jìn)行”。巖土體熱物性可以通過現(xiàn)場測試,以擾動(dòng)一響應(yīng)方式獲得,即在擬埋管區(qū)域安裝同規(guī)格、同深度的豎直埋管,通過水環(huán)路,將一定熱量(擾動(dòng))加給豎直埋管,記錄熱響應(yīng)數(shù)據(jù)。通過對(duì)這些數(shù)據(jù)的分析,獲得測試區(qū)域巖土體的導(dǎo)熱系數(shù)、擴(kuò)散系數(shù)及溫度。分析方法主要有3種,即線源理論、柱源理論及數(shù)值算法。實(shí)際應(yīng)用中,如有可能,應(yīng)盡量采用兩種以上的方法同時(shí)分析,以提高分析的可靠性。
巖土體熱物性測試要求測試時(shí)間為36-48 h, 供熱量應(yīng)為50-80 W/m,流量應(yīng)滿足供回水溫差11-22℃的需要,被測豎直埋管安裝完成后,根據(jù)導(dǎo)熱系數(shù)不同,需要3-5 d的等待期,此外對(duì)測量精度等也有具體要求。
目前測試設(shè)備有兩種,一種是小型便攜式,另一種是大型車載系統(tǒng),后者可以提供較大能量加熱系統(tǒng),最新設(shè)備還可以提供冷凍水測試冬季運(yùn)行工況,具有更好的精度及可靠性。
4)豎直埋管地下傳熱計(jì)算。
地下傳熱模型基本是建立在線源理論或柱源理論基礎(chǔ)上。1954年Ingersoll和Zobel提出將柱源傳熱方程作為計(jì)算埋管換熱器的合適方法,1985年Kavanaugh考慮U形排歹|j和逐時(shí)熱流變化對(duì)該方法進(jìn)行了改進(jìn)。
實(shí)際工程設(shè)計(jì)中很少使用這種乏味的計(jì)算,20世紀(jì)80年代人們更傾向于根據(jù)經(jīng)驗(yàn)進(jìn)行設(shè)計(jì)。80年代末,瑞典開發(fā)出一套計(jì)算結(jié)果可靠且使用簡單的軟件,其數(shù)值模型采用的是Eskilson(1987)提出的方法,該方法結(jié)合解析與數(shù)值模擬技術(shù),確定鉆孔周圍的溫度分布,在一定初始及邊界條件下,對(duì)同一土質(zhì)內(nèi)單一鉆孔建立瞬時(shí)有限差分方程,進(jìn)行二維數(shù)值計(jì)算獲得單孔周圍的溫度分布。通過對(duì)單孔溫度場的附加,得到整個(gè)埋管區(qū)垅相應(yīng)的溫度情況。為便于計(jì)算,將埋管區(qū)域的溫度響應(yīng)轉(zhuǎn)換成一系列無因次溫度響應(yīng)系數(shù),這些系數(shù)被稱為g - functions。通過g- functions可以計(jì)算一個(gè)時(shí)間步長的階梯熱輸入引起的埋管溫度的變化,有了g - functions,任意釋熱源或吸熱源影響都可轉(zhuǎn)化成一系列階梯熱脈沖進(jìn)行計(jì)算。1999年Yavuzturk和Spitler對(duì)Eskilson的g- functions進(jìn)行了改進(jìn),使該方法適用于短時(shí)間熱脈沖。
1984年Kavanaugh使用圓柱形源項(xiàng)處理,利用穩(wěn)態(tài)方法和有效熱阻方法近似模擬逐時(shí)吸熱與釋熱變化過程。《規(guī)范》中附錄B采用類似方法,給出了豎直地埋管換熱器的設(shè):
計(jì)計(jì)算方法,供設(shè)計(jì)選用。
水平埋管由于占地問題,大多城市住宅或公建均很難采用。由于應(yīng)用較少,國內(nèi)外對(duì)一其換熱機(jī)理研究也很少,目前主要是根據(jù)經(jīng)驗(yàn)數(shù)值進(jìn)行估算。2003年ASHRAE手冊(cè)給出了一些推薦數(shù)據(jù),供設(shè)計(jì)選用。主流地埋管設(shè)計(jì)軟件基本上均包括水平埋管的計(jì)算。
5)設(shè)計(jì)軟件。
通常地埋管設(shè)計(jì)計(jì)算是由軟件完成的。一方面是因?yàn)榈叵聯(lián)Q熱過程的復(fù)雜性,為可能節(jié)約埋管費(fèi)用,需要對(duì)埋管數(shù)量作準(zhǔn)確計(jì)算。另一方面地埋管設(shè)計(jì)需要預(yù)測隨建筑負(fù)荷的變化埋管換熱器逐時(shí)熱響應(yīng)情況及巖土體長期溫度變換情況。加拿大國家標(biāo)準(zhǔn)(CAN/CSA - C448.1)中對(duì)地埋管系統(tǒng)設(shè)計(jì)軟件明確提出了以下要求:
(1)能計(jì)算或輸入建筑物全年動(dòng)態(tài)負(fù)荷。
(2)能計(jì)算當(dāng)?shù)貛r土體平均溫度及地表溫度波幅。
(3)能模擬巖土體與換熱管間的熱傳遞及巖土體長期儲(chǔ)熱效果。
(4)能計(jì)算巖土體、傳熱介質(zhì)及換熱管的熱物性。
(5)能對(duì)所設(shè)計(jì)系統(tǒng)的地埋管換熱器的結(jié)構(gòu)進(jìn)行模擬(如鉆孔直徑、換熱器類型、灌漿情況等)。
為此,《規(guī)范》中規(guī)定“地埋管設(shè)計(jì)宜采用專用軟件進(jìn)行”。
判斷軟件復(fù)雜程度的標(biāo)準(zhǔn)有兩個(gè):一是在滿是埋管換熱器設(shè)計(jì)要求的前提下,用戶輸入最少,計(jì)算時(shí)間最短。二是要求能模擬預(yù)測隨建筑負(fù)荷查化,埋管換熱器逐時(shí)熱響應(yīng)情況。
目前,在國際上比較認(rèn)可的有建立在g一fun算法基礎(chǔ)上璃典隆德hmd大學(xué)開發(fā)的EED程序,美國威斯康星Wisconsin - Madison大學(xué)SolarEnergy實(shí)驗(yàn)室(SEI)開發(fā)的TRNSYS程序,美國俄克拉荷馬州Oklahona大學(xué)開發(fā)的GLHEPRO程序。此外還有加拿大NRC開發(fā)的GS2000,以及建立在利用穩(wěn)態(tài)方法和有效熱阻方法近似模擬基礎(chǔ)上的軟件GchpCalc等。
2.地下水系統(tǒng)。
地下水系統(tǒng)是目前地源熱泵系統(tǒng)應(yīng)用最廣的一種形式,據(jù)不完全統(tǒng)計(jì),目前國內(nèi)地下水項(xiàng)目已近300個(gè)。對(duì)于較大系統(tǒng),地下水系統(tǒng)的投資遠(yuǎn)低于地埋管系統(tǒng),這也是該系統(tǒng)得以廣泛應(yīng)用的主要原因。
(1)熱源井設(shè)計(jì)必須保證持續(xù)出水量需求及長期可靠回灌。不得對(duì)地下水資源造成浪費(fèi)和污染,是地下水系統(tǒng)應(yīng)用的前提。地下水屬于一種地質(zhì)資源,如無可靠的回灌,不僅造成水資源的浪費(fèi),同時(shí)地下水大量開采還會(huì)引起地面沉降、地裂縫、地面塌陷等地質(zhì)問題。在國內(nèi)的實(shí)際使用過程中,由于地質(zhì)及成井工藝的問題,回灌堵塞問題時(shí)有發(fā)生。
堵塞原因與熱源井設(shè)計(jì)及施工工藝密切相關(guān),為此《規(guī)范》明確要求“熱源井的設(shè)計(jì)單位應(yīng)具有水文地質(zhì)勘察資質(zhì)”。設(shè)計(jì)時(shí)熱源井井口應(yīng)嚴(yán)格封閉并采取減少空氣侵入的措施也是保障可靠回灌的必要措施。
(2)水質(zhì)處理。水質(zhì)處理是地下水系統(tǒng)的另一關(guān)鍵。地下水水質(zhì)復(fù)雜,有害成分有鐵、錳、鈣、鎂、二氧化碳、溶解氧、氯離子、酸堿度等。為保證系統(tǒng)正常運(yùn)行,通常根據(jù)地下水的水質(zhì)不同,采用相應(yīng)的處理措施,主要包括除砂、除鐵等。為了保證水源熱泵機(jī)組的正常運(yùn)行,《規(guī)范》要求“地下水換熱系統(tǒng)應(yīng)根據(jù)水源水質(zhì)條件采用直接或間接系統(tǒng)”。
(3)地下水流量控制。抽水泵功耗過高是目前地下水系統(tǒng)運(yùn)行存在的普遍問題。在對(duì)國內(nèi)部分地下水系統(tǒng)的調(diào)查時(shí)發(fā)現(xiàn),大多數(shù)地下水系統(tǒng)沒有調(diào)節(jié)措施,長期定流量運(yùn)行,只有少數(shù)系統(tǒng)采用了臺(tái)數(shù)控制。據(jù)相關(guān)資料介紹,在不良的設(shè)計(jì)中,井水泵的功耗可以占總能耗的25%或更多,使系統(tǒng)整體性能系數(shù)降低。
根據(jù)負(fù)荷需求調(diào)節(jié)地下水流量,具有很大節(jié)能潛力。《規(guī)范》中也建議“水系統(tǒng)宜采用變流量設(shè)計(jì)”。常用抽水泵控制方法有設(shè)置雙限溫度的雙位控制、變速控制和多井調(diào)節(jié)控制。在設(shè)計(jì)時(shí)應(yīng)根據(jù)抽水井數(shù)、系統(tǒng)形式和初投資綜合選用適合的控制方式。
北京市海淀區(qū)對(duì)水源熱泵回灌下游水質(zhì)跟蹤檢測3年多,未發(fā)現(xiàn)有污染和異常。歐洲、北美等地已使用20-30年。只要嚴(yán)格控制鑿井深度在淺表地層,嚴(yán)格禁止深入飲用水層以避免對(duì)飲用水的層間交叉污染,同時(shí)在設(shè)計(jì)、施工上嚴(yán)格把關(guān),真正做到可靠回灌,地下水系統(tǒng)不會(huì)對(duì)地下水資源造成浪費(fèi)和污染。
3.地表水系統(tǒng)。
地表水系統(tǒng)分開式和閉式兩種,開式系統(tǒng)類似于地下水系統(tǒng),閉式系統(tǒng)類似于地埋管系統(tǒng)。但是地表水體的熱特性與地下水或地埋管系統(tǒng)有很大不同。
與地埋管系統(tǒng)相比,地表水系統(tǒng)的優(yōu)勢(shì)是沒有鉆孔或挖掘費(fèi)用,投資相對(duì)低。缺點(diǎn)是設(shè)在公共水體中的換熱管有被損害的危險(xiǎn),而且如果水體小或淺,水體溫度隨空氣溫度變化較大。
(1)設(shè)計(jì)J應(yīng)評(píng)估系統(tǒng)運(yùn)行對(duì)水環(huán)境的影響。預(yù)測地表水系統(tǒng)長期運(yùn)行對(duì)水體溫度的影響,避免對(duì)水體生態(tài)環(huán)境產(chǎn)生影響。確定換熱盤管敷設(shè)位置及方式時(shí),應(yīng)考慮對(duì)行船等水面用途的影響。
(2)掌握地表水的水溫動(dòng)態(tài)變化規(guī)律是閉式系統(tǒng)設(shè)計(jì)的前提。地表水體的熱傳導(dǎo)主要有三種形式,一是太陽輻射熱。二是與周圍空氣間的對(duì)流換熱。三是與巖土體間的熱傳導(dǎo)。由于很難獲得水體溫度的實(shí)測數(shù)據(jù),通常水體溫度是根據(jù)室外空氣溫度,通過軟件模擬計(jì)算獲得。
(3)與地埋管系統(tǒng)一樣,閉式地表水系統(tǒng)設(shè)計(jì)也是借助軟件進(jìn)行。
(4)利用TRNSYS建立地表水換熱模型,模擬冬夏吸釋熱量不平衡時(shí)水體溫度的變化。對(duì)地表水體進(jìn)行10年運(yùn)行期的換熱模擬發(fā)現(xiàn)每年的溫度變化基本一致。說明地表水體與外界環(huán)境換熱量相對(duì)較大,一般可以趟除冬夏吸釋熱量不乎衡對(duì)水體溫度的影響。
(5)與地下水系統(tǒng)相類似,地表水系統(tǒng)同樣面臨水質(zhì)處理的問題。就海水源系統(tǒng)來說,該問題更加突出。我國濱臨渤海、黃海、東海、南海,有著很長的海岸線,海水作為熱容量最大的水體,理應(yīng)成為地表水系統(tǒng)的首選低位熱源。但海水對(duì)設(shè)備的腐蝕性成為海水源熱泵發(fā)展的一個(gè)瓶頸。為此《規(guī)范》中特別對(duì)海水源系統(tǒng)作了如下規(guī)定:“當(dāng)?shù)乇硭w為海水時(shí),與海水接觸的所有設(shè)備、部件及管道應(yīng)具有防腐、防生物附著的能力。與海水連通的所有設(shè)備、部件及管道應(yīng)具有過濾、清理的功能。”
4.建筑物內(nèi)系統(tǒng)。
(1)選用適宜地源熱泵系統(tǒng)的水源熱泵機(jī)組。國家現(xiàn)行標(biāo)準(zhǔn)《水源熱泵機(jī)組》
( GB/T 19409)中,對(duì)不同地源熱泵系統(tǒng),相應(yīng)水源熱泵機(jī)組正常工作的冷(熱)源溫度范圍也是不同的。
(2)水源熱泵機(jī)組及末端設(shè)備應(yīng)按實(shí)際運(yùn)行參數(shù)選型。不同地區(qū)巖土體、地下水或地表水水溫差別較大,設(shè)計(jì)時(shí)應(yīng)按實(shí)際水溫參數(shù)進(jìn)行設(shè)備選型。進(jìn)入機(jī)組溫度不同,機(jī)組COP相差很大。末端設(shè)備選擇時(shí)應(yīng)適合水源熱泵機(jī)組供、回水溫度的特點(diǎn),保證地源熱泵系統(tǒng)的應(yīng)用效果,提高系統(tǒng)節(jié)能率。
(四)地源熱泵系統(tǒng)優(yōu)化。
1.輔助冷熱源優(yōu)化配置。
帶輔助冷熱源的混合式系統(tǒng),由于它可有效減少埋管數(shù)量或地下(表)水流量或地表水換熱盤管的數(shù)量,同時(shí)也是保障地埋管系統(tǒng)吸釋熱量平衡的主要手段,已成為地源熱泵系統(tǒng)應(yīng)用的主要形式。《規(guī)范》中規(guī)定“在技術(shù)經(jīng)濟(jì)合理時(shí),可采用輔助熱源或冷卻源與地埋管換熱器并用的調(diào)峰形式”。
對(duì)混合式系統(tǒng)的優(yōu)化模擬分析,即以生命周期內(nèi)費(fèi)用最低為目標(biāo),對(duì)混合式系統(tǒng)運(yùn)行能耗及投資情況進(jìn)行模擬計(jì)算分析,優(yōu)化配置輔助加熱及散熱設(shè)備,也是目前國際上廣泛研究與分析的熱點(diǎn)。
與地源熱泵系統(tǒng)設(shè)計(jì)相關(guān)的軟件有兩大類,一類是埋管換熱器設(shè)計(jì)軟件。另一類是能夠提供方案優(yōu)化分析、模擬系統(tǒng)能耗及經(jīng)濟(jì)分析的軟件。許多軟件均具備雙重功能,如TRNSYS、GS2000等。
2.優(yōu)化確定地下水流量。
地下水系統(tǒng)設(shè)計(jì)時(shí)應(yīng)以提高系統(tǒng)綜合性能系數(shù)為目標(biāo),考慮抽水泵與水源熱泵機(jī)組能耗間的平衡,確定地下水的取水量。地下水流量增加,水源熱泵機(jī)組性能系數(shù)提高,但抽水泵能耗明顯增加。相反地下水流量較少,水源熱泵機(jī)組性能系數(shù)較低,但抽水泵能耗明顯減少,因此地下水系統(tǒng)設(shè)計(jì)應(yīng)在兩者之間尋找平衡點(diǎn),同時(shí)考慮部分負(fù)荷下兩者的綜合性能,計(jì)算不同工況下系統(tǒng)的綜合性能系數(shù),優(yōu)化確定地下水流量。該項(xiàng)工作對(duì)有效降低地下水系統(tǒng)運(yùn)行費(fèi)用至關(guān)重要。
3.節(jié)能控制策略。
地源熱泵系統(tǒng)宜采用變水量設(shè)計(jì)。針對(duì)典型建筑模型,利用TRNSYS建立地下水能耗模擬模型,對(duì)定流量運(yùn)行能耗進(jìn)行模擬。
水泵電耗占全年總耗電量的34%。如果水泵流量根據(jù)負(fù)荷需求進(jìn)行變頻控制,理論模擬結(jié)果為:大部分月份的節(jié)約電量都在一半以上,尤其是負(fù)荷較小的月份。所有水泵電耗由總電耗的34%降為19%。可見采取變流量措施具有明顯節(jié)能效益。
地埋管系統(tǒng)應(yīng)根據(jù)負(fù)荷變化,配合變流量措施,采用分區(qū)輪換間歇運(yùn)行的方式,使巖土體溫度得到有效恢復(fù),提高系統(tǒng)換熱效率。
國家提倡建設(shè)節(jié)約型社會(huì),國家強(qiáng)制建筑節(jié)能,不節(jié)能的房子不讓開工,不節(jié)能的房子不許銷售,房產(chǎn)開發(fā)推廣地源熱泵空調(diào)勢(shì)在必行。美國總統(tǒng)布什在自己的農(nóng)莊帶頭安裝地源熱泵,英國王宮帶頭安裝地源熱泵,我國也在要求政府大樓帶頭安裝地源熱泵,全民推廣使用地源熱泵的高潮正在到來。
《地源熱泵系統(tǒng)工程技術(shù)規(guī)范》(GB 50366-2005)解析。
實(shí)施可持續(xù)發(fā)展能源戰(zhàn)略已成為新時(shí)期我國能源發(fā)展的基本方針,可再生能源在建筑中的應(yīng)用是建筑節(jié)能工作的重要組成部分。2006年1月1日《可再生能源法》正式實(shí)施,地源熱泵系統(tǒng)作為可再生能源應(yīng)用的主要途徑之一,同時(shí)也是最利于與太陽能供熱系筒充相結(jié)合的系統(tǒng)形式,近年來在國內(nèi)得到了日益廣泛的應(yīng)用。地源熱泵系統(tǒng)利用淺層地?zé)崮苜Y源進(jìn)行供熱與空調(diào),具有良好的節(jié)能與環(huán)境效益,但由于缺乏相應(yīng)規(guī)范的約束,地源熱泵系統(tǒng)的推廣呈現(xiàn)出很大盲目性, 許多項(xiàng)目在沒有對(duì)當(dāng)?shù)?a href="http://www.ysjjz.com/t/資源.html" >資源狀況進(jìn)行充分評(píng)估的條件下就匆匆上馬,造成了地源熱泵系統(tǒng)工作不正常。為規(guī)范地源熱泵系統(tǒng)的設(shè)計(jì)、施工及驗(yàn)收,確保地源熱泵系統(tǒng)安全可靠的運(yùn)行,更好地發(fā)揮其節(jié)能效益,由中國建筑科學(xué)研究院主編,會(huì)同13個(gè)單位共同編制了《地源熱泵系統(tǒng)工程技術(shù)規(guī)范》(以下簡稱《規(guī)范》)。
該規(guī)范現(xiàn)已頒布,并于2006年1月1日起實(shí)施。
由于地源熱泵系統(tǒng)的特殊性,其設(shè)計(jì)方法是其關(guān)鍵與難點(diǎn),也是業(yè)內(nèi)人士普遍關(guān)注的問題,同時(shí)也是國外熱點(diǎn)課題,在新頒布的規(guī)范》中首次對(duì)其設(shè)計(jì)方法提出了具體要求。
(一)《規(guī)范》的適用范圍及地源熱泵系統(tǒng)的定義。
1.《規(guī)范》的適用范圍。
《規(guī)范》適用于以巖土體、地下水、地表水為低溫熱源,以水或添加防凍劑的水溶液為傳熱介質(zhì),采用蒸汽壓縮熱泵技術(shù)進(jìn)行供熱、空調(diào)或加熱生活熱水的系統(tǒng)工程的設(shè)計(jì)、施工及驗(yàn)收。它包括以下兩方面的含義:
(1)“以水或添加防凍劑的水溶液為傳熱介質(zhì)”,意指不適用于直接膨脹熱泵系統(tǒng),即直接將蒸發(fā)器或冷凝器埋人地下的一種熱泵系統(tǒng)。該系統(tǒng)目前在北美地區(qū)別墅或小型商F掃建筑中應(yīng)用,它的優(yōu)點(diǎn)是成孔直徑小、效率高、也可避免使用防凍劑。但制冷劑泄漏危險(xiǎn)f生較大,僅適于小規(guī)模應(yīng)用。
(2)“采用蒸氣壓縮熱泵技術(shù)進(jìn)行…”,意指不包括吸收式熱泵。
2.地源熱泵系統(tǒng)的定義。
地源熱泵系統(tǒng)根據(jù)地?zé)崮?/a>交換系統(tǒng)形式的不同,分為地埋管地源熱泵系統(tǒng)(簡稱地坶管。系統(tǒng))、地下水地源熱泵系統(tǒng)(簡稱地下水系統(tǒng))和地表水地源熱泵系統(tǒng)(簡稱地表水系統(tǒng))。其中地埋管地源熱泵系統(tǒng)也稱地耦合系統(tǒng)( closed - loopground - coupledheatpump。ystem)或土壤源地源熱泵系統(tǒng),考慮實(shí)際應(yīng)用中人們的稱呼習(xí)慣,同時(shí)便于理解,《規(guī)范》
定義為地埋管地源熱泵系統(tǒng)。地表水系統(tǒng)中的地表水是一個(gè)廣義的概念,包括河流、湖泊、海水、中水或達(dá)到國家排放標(biāo)準(zhǔn)的污水、廢水等。只要是以巖土體、地下水或地表水為氐溫熱源,由水源熱泵機(jī)組、地?zé)崮?/a>交換系統(tǒng)、建筑物內(nèi)系統(tǒng)組成的供熱空調(diào)系統(tǒng),統(tǒng)稱為也源熱泵系統(tǒng)。
(二)地源熱泵系統(tǒng)的設(shè)計(jì)特點(diǎn)。
1.地源熱泵系統(tǒng)受低位熱源條件的制約。
對(duì)地埋管系統(tǒng),除了要有足夠的埋管區(qū)域還要有比較適合的巖土體特性。堅(jiān)硬的巖土體將增加施工難度及初投資,而松軟巖土黼9地質(zhì)變形對(duì)地埋管換熱器也會(huì)產(chǎn)生不利影響。為此,工程勘察完成后,應(yīng)對(duì)地埋管換熱系統(tǒng)實(shí)施的可行性及經(jīng)濟(jì)性進(jìn)行評(píng)估。
對(duì)地下水系統(tǒng),首先要有持續(xù)水源的保證,同時(shí)還要具備可靠的回灌能力。《規(guī)范》中強(qiáng)制規(guī)定“地下水換熱系統(tǒng)應(yīng)根據(jù)水文地質(zhì)勘察資料進(jìn)行設(shè)計(jì),并必須采取可靠回灌措施,確保置換冷量或熱量后的地下水全部回灌到同一含水層,不得對(duì)地下水資源造成浪費(fèi)及污染。系統(tǒng)投入運(yùn)行后,應(yīng)對(duì)抽水量、回灌量及其水質(zhì)進(jìn)行監(jiān)測”。
對(duì)地表水系統(tǒng),設(shè)計(jì)前應(yīng)對(duì)地表水系統(tǒng)運(yùn)行對(duì)水環(huán)境的影響進(jìn)行評(píng)估。地表水換熱系統(tǒng)設(shè)計(jì)方案應(yīng)根據(jù)水面用途,地表水深度、面積、水質(zhì)、水位、水溫情況綜合確定。
2.地源熱泵系統(tǒng)受低位熱源的影響很大。
低位熱源的不定因素非常多,不同的地區(qū)、不同的氣象條件,甚至同一地區(qū)不同區(qū)域,低位熱源也會(huì)有很大差異,這些因素都會(huì)對(duì)地源熱泵系統(tǒng)設(shè)計(jì)帶來影響。如地埋管系統(tǒng),巖土體熱物性對(duì)地埋管換熱器的換熱效果有很大影響,單位管長換熱能力差別可達(dá)3倍或更多。
3.設(shè)計(jì)相對(duì)復(fù)雜。
低位熱源換熱系統(tǒng)是地源熱泵系統(tǒng)特有的內(nèi)容,也是地源熱泵系統(tǒng)設(shè)計(jì)的關(guān)鍵和難點(diǎn)。地下?lián)Q熱過程是一個(gè)復(fù)雜的非穩(wěn)態(tài)過程,影響因素眾多,計(jì)算過程復(fù)雜,通常需要借助專用軟件才能實(shí)現(xiàn)。
地源熱泵系統(tǒng)設(shè)計(jì)應(yīng)考慮低位熱源長期運(yùn)行的穩(wěn)定性。方案設(shè)計(jì)時(shí)應(yīng)對(duì)若干年后巖土體的溫度變化,地下水水量、溫度的變化,地表水體溫度的變化進(jìn)行預(yù)測,根據(jù)預(yù)測結(jié)果確定應(yīng)采用的系統(tǒng)方案。
地源熱泵系統(tǒng)與常規(guī)系統(tǒng)相比,增加了低位熱源換熱部分的投資,且投資比例較高,為了提高地源熱泵系統(tǒng)的綜合效益,或由于受客觀條件限制,低位熱源不能滿足供熱或供冷要求時(shí),通常采用混合式地源熱泵系統(tǒng),即采用輔助冷熱源與地源熱泵系統(tǒng)相結(jié)合的方式。確定輔助冷熱源的過程,也就是方案優(yōu)化的過程,無形中提高了方案設(shè)計(jì)的難度。
(三)地源熱泵系統(tǒng)設(shè)計(jì)要點(diǎn)。
1.地埋管系統(tǒng)。
由于地埋管系統(tǒng)通過埋管換熱方式將淺層地?zé)崮苜Y源加以利用,避免了對(duì)地下水資源的依賴,近年來得到了越來越廣泛的應(yīng)用。但地埋管系統(tǒng)的設(shè)計(jì)方法一直沒有明確規(guī)定,通常設(shè)計(jì)院將地埋管換熱設(shè)計(jì)交給專業(yè)工程公司完成。除少數(shù)有一定技術(shù)實(shí)力的公司引進(jìn)了國外軟件,可作一些分析外,通常專業(yè)公司只是根據(jù)設(shè)計(jì)負(fù)荷,按經(jīng)驗(yàn)估算確定埋管數(shù)量及埋深,對(duì)動(dòng)態(tài)負(fù)荷的影響缺乏分析,對(duì)長期運(yùn)行效果沒有預(yù)測,造成地埋管區(qū)域巖土體溫度持續(xù)升高或降低,從而影響地埋管換熱器的換熱性能,降低地埋管換熱系統(tǒng)的運(yùn)行效率。
因此,保證地埋管系統(tǒng)長期穩(wěn)定運(yùn)行是地埋管換熱系統(tǒng)設(shè)計(jì)的首要問題,在保證需求的條件下,地埋管換熱系統(tǒng)設(shè)計(jì)應(yīng)盡呵能降低初投資及運(yùn)行費(fèi)用。
1)負(fù)荷計(jì)算。
地埋管系統(tǒng)是否能夠可靠運(yùn)行取決于埋管區(qū)域巖土體溫度是否能長期穩(wěn)定。
以一棟總建筑面積為2 100矗的小型辦公建筑為例,選取4個(gè)具有代表性的地區(qū):
北京、上海、沈陽和齊齊哈爾,利用TRNSYS模擬地源熱泵系統(tǒng)連續(xù)運(yùn)行5年后。
由于吸、釋熱量不平衡造成巖土體溫度的持續(xù)升贏或降低,導(dǎo)致進(jìn)入水源熱泵機(jī)組的傳熱介質(zhì)溫度變化很大,該溫度的提高或降低,都會(huì)帶來瘩源熱泵機(jī)組性能系數(shù)的降低,不僅影響地源熱泵系統(tǒng)的供冷供熱效果-,也降低了地源熱泵系統(tǒng)的整體節(jié)能性。為此《規(guī)范》明確規(guī)定,“地埋管換熱系統(tǒng)設(shè)計(jì)應(yīng)進(jìn)行全年動(dòng)態(tài)負(fù)荷計(jì)算,最小計(jì)2周期宜為1年。計(jì)算周期內(nèi),地源熱泵系統(tǒng)總釋熱量宜與其總吸熱量相平衡”。
2)地埋管換熱器設(shè)計(jì)。
地埋管換熱器設(shè)計(jì)是地埋管系統(tǒng)設(shè)計(jì)特有的內(nèi)容和核心。由于地埋管換熱器換熱效果不僅受巖土體導(dǎo)熱性能及地下水流動(dòng)情況等地質(zhì)條件的影響,同時(shí)建筑物全年動(dòng)態(tài)負(fù)荷、巖土體溫度的變化、地埋管管材、地埋管形式及傳熱介質(zhì)特性等因素都會(huì)影響地埋管換熱器的換熱效果。
地埋管換熱器有兩種主要形式,即豎直地埋管換熱器(以下簡稱豎直埋管)和水平地埋管換熱器(以下簡稱水平埋管)。由于水平埋管占地面積較大,目前應(yīng)用以豎直埋管居多。
3)巖土體熱物性的確定。
巖土體熱物性的確定是豎直埋管設(shè)計(jì)的關(guān)鍵。《規(guī)范》中規(guī)定“地埋管換熱器設(shè)計(jì)計(jì)算宜根據(jù)現(xiàn)場實(shí)測巖土體及回填料熱物性參數(shù)進(jìn)行”。巖土體熱物性可以通過現(xiàn)場測試,以擾動(dòng)一響應(yīng)方式獲得,即在擬埋管區(qū)域安裝同規(guī)格、同深度的豎直埋管,通過水環(huán)路,將一定熱量(擾動(dòng))加給豎直埋管,記錄熱響應(yīng)數(shù)據(jù)。通過對(duì)這些數(shù)據(jù)的分析,獲得測試區(qū)域巖土體的導(dǎo)熱系數(shù)、擴(kuò)散系數(shù)及溫度。分析方法主要有3種,即線源理論、柱源理論及數(shù)值算法。實(shí)際應(yīng)用中,如有可能,應(yīng)盡量采用兩種以上的方法同時(shí)分析,以提高分析的可靠性。
巖土體熱物性測試要求測試時(shí)間為36-48 h, 供熱量應(yīng)為50-80 W/m,流量應(yīng)滿足供回水溫差11-22℃的需要,被測豎直埋管安裝完成后,根據(jù)導(dǎo)熱系數(shù)不同,需要3-5 d的等待期,此外對(duì)測量精度等也有具體要求。
目前測試設(shè)備有兩種,一種是小型便攜式,另一種是大型車載系統(tǒng),后者可以提供較大能量加熱系統(tǒng),最新設(shè)備還可以提供冷凍水測試冬季運(yùn)行工況,具有更好的精度及可靠性。
4)豎直埋管地下傳熱計(jì)算。
地下傳熱模型基本是建立在線源理論或柱源理論基礎(chǔ)上。1954年Ingersoll和Zobel提出將柱源傳熱方程作為計(jì)算埋管換熱器的合適方法,1985年Kavanaugh考慮U形排歹|j和逐時(shí)熱流變化對(duì)該方法進(jìn)行了改進(jìn)。
實(shí)際工程設(shè)計(jì)中很少使用這種乏味的計(jì)算,20世紀(jì)80年代人們更傾向于根據(jù)經(jīng)驗(yàn)進(jìn)行設(shè)計(jì)。80年代末,瑞典開發(fā)出一套計(jì)算結(jié)果可靠且使用簡單的軟件,其數(shù)值模型采用的是Eskilson(1987)提出的方法,該方法結(jié)合解析與數(shù)值模擬技術(shù),確定鉆孔周圍的溫度分布,在一定初始及邊界條件下,對(duì)同一土質(zhì)內(nèi)單一鉆孔建立瞬時(shí)有限差分方程,進(jìn)行二維數(shù)值計(jì)算獲得單孔周圍的溫度分布。通過對(duì)單孔溫度場的附加,得到整個(gè)埋管區(qū)垅相應(yīng)的溫度情況。為便于計(jì)算,將埋管區(qū)域的溫度響應(yīng)轉(zhuǎn)換成一系列無因次溫度響應(yīng)系數(shù),這些系數(shù)被稱為g - functions。通過g- functions可以計(jì)算一個(gè)時(shí)間步長的階梯熱輸入引起的埋管溫度的變化,有了g - functions,任意釋熱源或吸熱源影響都可轉(zhuǎn)化成一系列階梯熱脈沖進(jìn)行計(jì)算。1999年Yavuzturk和Spitler對(duì)Eskilson的g- functions進(jìn)行了改進(jìn),使該方法適用于短時(shí)間熱脈沖。
1984年Kavanaugh使用圓柱形源項(xiàng)處理,利用穩(wěn)態(tài)方法和有效熱阻方法近似模擬逐時(shí)吸熱與釋熱變化過程。《規(guī)范》中附錄B采用類似方法,給出了豎直地埋管換熱器的設(shè):
計(jì)計(jì)算方法,供設(shè)計(jì)選用。
水平埋管由于占地問題,大多城市住宅或公建均很難采用。由于應(yīng)用較少,國內(nèi)外對(duì)一其換熱機(jī)理研究也很少,目前主要是根據(jù)經(jīng)驗(yàn)數(shù)值進(jìn)行估算。2003年ASHRAE手冊(cè)給出了一些推薦數(shù)據(jù),供設(shè)計(jì)選用。主流地埋管設(shè)計(jì)軟件基本上均包括水平埋管的計(jì)算。
5)設(shè)計(jì)軟件。
通常地埋管設(shè)計(jì)計(jì)算是由軟件完成的。一方面是因?yàn)榈叵聯(lián)Q熱過程的復(fù)雜性,為可能節(jié)約埋管費(fèi)用,需要對(duì)埋管數(shù)量作準(zhǔn)確計(jì)算。另一方面地埋管設(shè)計(jì)需要預(yù)測隨建筑負(fù)荷的變化埋管換熱器逐時(shí)熱響應(yīng)情況及巖土體長期溫度變換情況。加拿大國家標(biāo)準(zhǔn)(CAN/CSA - C448.1)中對(duì)地埋管系統(tǒng)設(shè)計(jì)軟件明確提出了以下要求:
(1)能計(jì)算或輸入建筑物全年動(dòng)態(tài)負(fù)荷。
(2)能計(jì)算當(dāng)?shù)貛r土體平均溫度及地表溫度波幅。
(3)能模擬巖土體與換熱管間的熱傳遞及巖土體長期儲(chǔ)熱效果。
(4)能計(jì)算巖土體、傳熱介質(zhì)及換熱管的熱物性。
(5)能對(duì)所設(shè)計(jì)系統(tǒng)的地埋管換熱器的結(jié)構(gòu)進(jìn)行模擬(如鉆孔直徑、換熱器類型、灌漿情況等)。
為此,《規(guī)范》中規(guī)定“地埋管設(shè)計(jì)宜采用專用軟件進(jìn)行”。
判斷軟件復(fù)雜程度的標(biāo)準(zhǔn)有兩個(gè):一是在滿是埋管換熱器設(shè)計(jì)要求的前提下,用戶輸入最少,計(jì)算時(shí)間最短。二是要求能模擬預(yù)測隨建筑負(fù)荷查化,埋管換熱器逐時(shí)熱響應(yīng)情況。
目前,在國際上比較認(rèn)可的有建立在g一fun算法基礎(chǔ)上璃典隆德hmd大學(xué)開發(fā)的EED程序,美國威斯康星Wisconsin - Madison大學(xué)SolarEnergy實(shí)驗(yàn)室(SEI)開發(fā)的TRNSYS程序,美國俄克拉荷馬州Oklahona大學(xué)開發(fā)的GLHEPRO程序。此外還有加拿大NRC開發(fā)的GS2000,以及建立在利用穩(wěn)態(tài)方法和有效熱阻方法近似模擬基礎(chǔ)上的軟件GchpCalc等。
2.地下水系統(tǒng)。
地下水系統(tǒng)是目前地源熱泵系統(tǒng)應(yīng)用最廣的一種形式,據(jù)不完全統(tǒng)計(jì),目前國內(nèi)地下水項(xiàng)目已近300個(gè)。對(duì)于較大系統(tǒng),地下水系統(tǒng)的投資遠(yuǎn)低于地埋管系統(tǒng),這也是該系統(tǒng)得以廣泛應(yīng)用的主要原因。
(1)熱源井設(shè)計(jì)必須保證持續(xù)出水量需求及長期可靠回灌。不得對(duì)地下水資源造成浪費(fèi)和污染,是地下水系統(tǒng)應(yīng)用的前提。地下水屬于一種地質(zhì)資源,如無可靠的回灌,不僅造成水資源的浪費(fèi),同時(shí)地下水大量開采還會(huì)引起地面沉降、地裂縫、地面塌陷等地質(zhì)問題。在國內(nèi)的實(shí)際使用過程中,由于地質(zhì)及成井工藝的問題,回灌堵塞問題時(shí)有發(fā)生。
堵塞原因與熱源井設(shè)計(jì)及施工工藝密切相關(guān),為此《規(guī)范》明確要求“熱源井的設(shè)計(jì)單位應(yīng)具有水文地質(zhì)勘察資質(zhì)”。設(shè)計(jì)時(shí)熱源井井口應(yīng)嚴(yán)格封閉并采取減少空氣侵入的措施也是保障可靠回灌的必要措施。
(2)水質(zhì)處理。水質(zhì)處理是地下水系統(tǒng)的另一關(guān)鍵。地下水水質(zhì)復(fù)雜,有害成分有鐵、錳、鈣、鎂、二氧化碳、溶解氧、氯離子、酸堿度等。為保證系統(tǒng)正常運(yùn)行,通常根據(jù)地下水的水質(zhì)不同,采用相應(yīng)的處理措施,主要包括除砂、除鐵等。為了保證水源熱泵機(jī)組的正常運(yùn)行,《規(guī)范》要求“地下水換熱系統(tǒng)應(yīng)根據(jù)水源水質(zhì)條件采用直接或間接系統(tǒng)”。
(3)地下水流量控制。抽水泵功耗過高是目前地下水系統(tǒng)運(yùn)行存在的普遍問題。在對(duì)國內(nèi)部分地下水系統(tǒng)的調(diào)查時(shí)發(fā)現(xiàn),大多數(shù)地下水系統(tǒng)沒有調(diào)節(jié)措施,長期定流量運(yùn)行,只有少數(shù)系統(tǒng)采用了臺(tái)數(shù)控制。據(jù)相關(guān)資料介紹,在不良的設(shè)計(jì)中,井水泵的功耗可以占總能耗的25%或更多,使系統(tǒng)整體性能系數(shù)降低。
根據(jù)負(fù)荷需求調(diào)節(jié)地下水流量,具有很大節(jié)能潛力。《規(guī)范》中也建議“水系統(tǒng)宜采用變流量設(shè)計(jì)”。常用抽水泵控制方法有設(shè)置雙限溫度的雙位控制、變速控制和多井調(diào)節(jié)控制。在設(shè)計(jì)時(shí)應(yīng)根據(jù)抽水井數(shù)、系統(tǒng)形式和初投資綜合選用適合的控制方式。
北京市海淀區(qū)對(duì)水源熱泵回灌下游水質(zhì)跟蹤檢測3年多,未發(fā)現(xiàn)有污染和異常。歐洲、北美等地已使用20-30年。只要嚴(yán)格控制鑿井深度在淺表地層,嚴(yán)格禁止深入飲用水層以避免對(duì)飲用水的層間交叉污染,同時(shí)在設(shè)計(jì)、施工上嚴(yán)格把關(guān),真正做到可靠回灌,地下水系統(tǒng)不會(huì)對(duì)地下水資源造成浪費(fèi)和污染。
3.地表水系統(tǒng)。
地表水系統(tǒng)分開式和閉式兩種,開式系統(tǒng)類似于地下水系統(tǒng),閉式系統(tǒng)類似于地埋管系統(tǒng)。但是地表水體的熱特性與地下水或地埋管系統(tǒng)有很大不同。
與地埋管系統(tǒng)相比,地表水系統(tǒng)的優(yōu)勢(shì)是沒有鉆孔或挖掘費(fèi)用,投資相對(duì)低。缺點(diǎn)是設(shè)在公共水體中的換熱管有被損害的危險(xiǎn),而且如果水體小或淺,水體溫度隨空氣溫度變化較大。
(1)設(shè)計(jì)J應(yīng)評(píng)估系統(tǒng)運(yùn)行對(duì)水環(huán)境的影響。預(yù)測地表水系統(tǒng)長期運(yùn)行對(duì)水體溫度的影響,避免對(duì)水體生態(tài)環(huán)境產(chǎn)生影響。確定換熱盤管敷設(shè)位置及方式時(shí),應(yīng)考慮對(duì)行船等水面用途的影響。
(2)掌握地表水的水溫動(dòng)態(tài)變化規(guī)律是閉式系統(tǒng)設(shè)計(jì)的前提。地表水體的熱傳導(dǎo)主要有三種形式,一是太陽輻射熱。二是與周圍空氣間的對(duì)流換熱。三是與巖土體間的熱傳導(dǎo)。由于很難獲得水體溫度的實(shí)測數(shù)據(jù),通常水體溫度是根據(jù)室外空氣溫度,通過軟件模擬計(jì)算獲得。
(3)與地埋管系統(tǒng)一樣,閉式地表水系統(tǒng)設(shè)計(jì)也是借助軟件進(jìn)行。
(4)利用TRNSYS建立地表水換熱模型,模擬冬夏吸釋熱量不平衡時(shí)水體溫度的變化。對(duì)地表水體進(jìn)行10年運(yùn)行期的換熱模擬發(fā)現(xiàn)每年的溫度變化基本一致。說明地表水體與外界環(huán)境換熱量相對(duì)較大,一般可以趟除冬夏吸釋熱量不乎衡對(duì)水體溫度的影響。
(5)與地下水系統(tǒng)相類似,地表水系統(tǒng)同樣面臨水質(zhì)處理的問題。就海水源系統(tǒng)來說,該問題更加突出。我國濱臨渤海、黃海、東海、南海,有著很長的海岸線,海水作為熱容量最大的水體,理應(yīng)成為地表水系統(tǒng)的首選低位熱源。但海水對(duì)設(shè)備的腐蝕性成為海水源熱泵發(fā)展的一個(gè)瓶頸。為此《規(guī)范》中特別對(duì)海水源系統(tǒng)作了如下規(guī)定:“當(dāng)?shù)乇硭w為海水時(shí),與海水接觸的所有設(shè)備、部件及管道應(yīng)具有防腐、防生物附著的能力。與海水連通的所有設(shè)備、部件及管道應(yīng)具有過濾、清理的功能。”
4.建筑物內(nèi)系統(tǒng)。
(1)選用適宜地源熱泵系統(tǒng)的水源熱泵機(jī)組。國家現(xiàn)行標(biāo)準(zhǔn)《水源熱泵機(jī)組》
( GB/T 19409)中,對(duì)不同地源熱泵系統(tǒng),相應(yīng)水源熱泵機(jī)組正常工作的冷(熱)源溫度范圍也是不同的。
(2)水源熱泵機(jī)組及末端設(shè)備應(yīng)按實(shí)際運(yùn)行參數(shù)選型。不同地區(qū)巖土體、地下水或地表水水溫差別較大,設(shè)計(jì)時(shí)應(yīng)按實(shí)際水溫參數(shù)進(jìn)行設(shè)備選型。進(jìn)入機(jī)組溫度不同,機(jī)組COP相差很大。末端設(shè)備選擇時(shí)應(yīng)適合水源熱泵機(jī)組供、回水溫度的特點(diǎn),保證地源熱泵系統(tǒng)的應(yīng)用效果,提高系統(tǒng)節(jié)能率。
(四)地源熱泵系統(tǒng)優(yōu)化。
1.輔助冷熱源優(yōu)化配置。
帶輔助冷熱源的混合式系統(tǒng),由于它可有效減少埋管數(shù)量或地下(表)水流量或地表水換熱盤管的數(shù)量,同時(shí)也是保障地埋管系統(tǒng)吸釋熱量平衡的主要手段,已成為地源熱泵系統(tǒng)應(yīng)用的主要形式。《規(guī)范》中規(guī)定“在技術(shù)經(jīng)濟(jì)合理時(shí),可采用輔助熱源或冷卻源與地埋管換熱器并用的調(diào)峰形式”。
對(duì)混合式系統(tǒng)的優(yōu)化模擬分析,即以生命周期內(nèi)費(fèi)用最低為目標(biāo),對(duì)混合式系統(tǒng)運(yùn)行能耗及投資情況進(jìn)行模擬計(jì)算分析,優(yōu)化配置輔助加熱及散熱設(shè)備,也是目前國際上廣泛研究與分析的熱點(diǎn)。
與地源熱泵系統(tǒng)設(shè)計(jì)相關(guān)的軟件有兩大類,一類是埋管換熱器設(shè)計(jì)軟件。另一類是能夠提供方案優(yōu)化分析、模擬系統(tǒng)能耗及經(jīng)濟(jì)分析的軟件。許多軟件均具備雙重功能,如TRNSYS、GS2000等。
2.優(yōu)化確定地下水流量。
地下水系統(tǒng)設(shè)計(jì)時(shí)應(yīng)以提高系統(tǒng)綜合性能系數(shù)為目標(biāo),考慮抽水泵與水源熱泵機(jī)組能耗間的平衡,確定地下水的取水量。地下水流量增加,水源熱泵機(jī)組性能系數(shù)提高,但抽水泵能耗明顯增加。相反地下水流量較少,水源熱泵機(jī)組性能系數(shù)較低,但抽水泵能耗明顯減少,因此地下水系統(tǒng)設(shè)計(jì)應(yīng)在兩者之間尋找平衡點(diǎn),同時(shí)考慮部分負(fù)荷下兩者的綜合性能,計(jì)算不同工況下系統(tǒng)的綜合性能系數(shù),優(yōu)化確定地下水流量。該項(xiàng)工作對(duì)有效降低地下水系統(tǒng)運(yùn)行費(fèi)用至關(guān)重要。
3.節(jié)能控制策略。
地源熱泵系統(tǒng)宜采用變水量設(shè)計(jì)。針對(duì)典型建筑模型,利用TRNSYS建立地下水能耗模擬模型,對(duì)定流量運(yùn)行能耗進(jìn)行模擬。
水泵電耗占全年總耗電量的34%。如果水泵流量根據(jù)負(fù)荷需求進(jìn)行變頻控制,理論模擬結(jié)果為:大部分月份的節(jié)約電量都在一半以上,尤其是負(fù)荷較小的月份。所有水泵電耗由總電耗的34%降為19%。可見采取變流量措施具有明顯節(jié)能效益。
地埋管系統(tǒng)應(yīng)根據(jù)負(fù)荷變化,配合變流量措施,采用分區(qū)輪換間歇運(yùn)行的方式,使巖土體溫度得到有效恢復(fù),提高系統(tǒng)換熱效率。